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Abstract
In this paper, we investigate the linearizability problem for the two-dimensional
planar complex system ẋ = x(1 − a10x − a01y − a20x

2 − a11xy − a02y
2), ẏ =

−y(1 − b10x − b01y − b20x
2 − b11xy − b02y

2). The necessary and sufficient
conditions for the linearizability of this system are found. From them the
conditions for isochronicity of the corresponding real system can be derived.

PACS numbers: 02.30.Hq, 02.60.Lj
Mathematics Subject Classification: 34C35, 34D30

1. Introduction and statement of the results

Consider a planar analytic differential system in the form of a linear center perturbed by
higher-order terms, that is,

u̇ = −v + U(u, v), v̇ = u + V (u, v), (1)

where U and V are real analytic functions whose series expansions in a neighborhood of the
origin start in at least second-order terms. Taking polar coordinates we can see that near the
origin either all non-stationary trajectories of (1) are ovals (in which case the origin is a center)
or they are spirals (in which case the origin is a focus). By the Poincaré–Lyapunov system,
(1) has a center at the origin if and only if there is a first integral:

�(u, v) = u2 + v2 +
∞∑

k+j=3

φkjx
kyj ,

where the series converges in a neighborhood of the origin. The problem of distinguishing
between a center and a focus at the origin of system (1) is called the center problem.

If the origin is a center, then the problem that arises is to determine when the period
of the solutions near the origin is constant. A center with such a property is called an
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isochronous center. The research of the isochronous center phenomena was started in 1673
when Huygens studied the cycloidal pendulum; see [16]. The isochronous center theorem
of Poincaré and Lyapunov says that the center of (1) is isochronous if and only if it is
linearizable. Hence, the isochronicity problem is equivalent to the linearizability problem.
The history of the study of the isochronous center is interesting also in the sense that this result
has been rediscovered several times. It was rediscovered by Gregor [24] in 1958, Lukashevich
[31] in 1965, Brickman–Thomas [2] in 1977 and Villarini [39] in 1992; see, for instance,
[20, 21, 42] and references therein. There are only few families of polynomial differential
systems in which a complete classification of the isochronous centers is known; see, for
instance, [8, 9, 27, 30, 31, 35, 37].

In 1964, Loud [30] classified isochronous centers of system (1) with U and V being the
homogeneous polynomials of degree 2, and in 1969, Pleshkan [35] found all isochronous
centers in the family (1), where U and V are homogeneous polynomials of degree 3.
However, the classifications of isochronous centers in the form of a linear center perturbed by
homogeneous polynomials of the fourth and fifth degrees turned out to be much more difficult.
In [8, 9], isochronous centers for time-reversible systems (1) in the case of a homogeneous
perturbation of the fourth and fifth degrees were found (by definition, system (1) is time
reversible if it is invariant under reflection with respect to a line passing through the origin
and a change in the direction of time). More recently in [10], all the isochronous centers for
time-reversible systems (1) in the case of a homogeneous perturbation of degree 4 have been
obtained. Moreover, the complete classification of the isochronous centers for a linear center
perturbed by fifth degree homogeneous polynomials has been given in [36].

It is known from the time of Lyapunov [26] that computation of normal forms and first
integrals of system (1) can be considerably simplified if we introduce a complex structure on
the phase plane (u, v) by setting x = u + iv. Then we obtain from system (1) the equation

ẋ = R(x, x̄).

Adjoining to the later equation its complex conjugate, we have the system

ẋ = R(x, x̄), ˙̄x = R̄(x, x̄).

Let us consider x̄ as a new variable y and R̄ as a new function. Then, in the case when U
and V are polynomials of degree n, from the later system we obtain, after the change of time
idt = dτ and rewriting t instead of τ , a system of two complex differential equations of the
form

ẋ = x −
n−1∑

p+q=1

ap,qx
p+1yq = P(x, y),

ẏ = −y +
n−1∑

p+q=1

bp,qx
qyp+1 = Q(x, y).

(2)

Here p � −1 and q � 0, and we denote the coefficients of system (2) by (A,B) =
(a1,0, a0,1, . . . , a−1,n, b1,0, b0,1, . . . , bn,−1). It is said that system (2) has a center at the origin
if it admits a first integral of the form

�(x, y) = xy +
∞∑

l+j=3

vl,j x
lyj . (3)

The linearizability problem for system (2) is the problem of deciding whether the system
can be transformed into the linear system, ż1 = z1 and ż2 = −z2, by means of the formal
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change of the phase variables:

z1 = x +
∞∑

m+j=2

cm−1,j (A,B)xmyj , z2 = y +
∞∑

m+j=2

dm,j−1(A,B)xmyj . (4)

If such a transformation exists, we say that the system is linearizable, i.e., there is a linearizable
center at the origin. Moreover, it is well known that if there exists a formal series (4) linearizing
(2), then there exists a series which converges in the neighborhood of the origin; see [1]. The
linearizability problem for the complex system (2) is a generalization of the linearizability
problem (isochronicity) for the real system (1) in the sense that if we know all linearizable
centers within a given family (2) then going back to the real coordinates (u, v) we obtain all
linearizable (isochronous) centers of family (1).

The center and isochronicity problems for the so-called cubic system, that is, for the
system

u̇ = −v + U2(u, v) + U3(u, v), v̇ = u + V2(u, v) + V3(u, v), (5)

where U2, V2 and U3, V3 are homogeneous polynomials of degrees two and three, respectively,
have been intensively studied during last few decades (it appears that there are tens or maybe
even hundreds of papers where the center and isochronicity problems for particular subfamilies
of (5) have been discussed (see, e.g., [3–5, 7, 12, 15, 20, 23, 32, 37, 38] and references therein).
In this paper, we study the linearizability problem for the following two-dimensional planar
complex system:

ẋ = x(1 − a10x − a01y − a20x
2 − a11xy − a02y

2),

ẏ = −y(1 − b10x − b01y − b20x
2 − b11xy − b02y

2).
(6)

This ten-parameter cubic system contains the family studied in [15] and other families studied
in [37, 38]. To the best of our knowledge it is the largest subfamily of the cubic system
that has been studied so far. The family has two complex invariant lines passing through the
origin, which is why we call it the complex Lotka–Volterra system. The differential equations
modeling the interaction of two species have been studied extensively by real systems of the
form

ẋ = xF(x, y), ẏ = yG(x, y),

being also known as Kolmogorov systems; see [28, 29, 41]. In that case, attention is restricted
to the behavior of orbits in the ‘realistic quadrant’ {(x, y) ∈ R

2|x > 0, y > 0}. In the classical
Lotka–Volterra model, F and G are linear, and it is well known that there are no limit cycles. If
F and G are quadratic, of particular significance in applications is the existence of limit cycles
and the number of them that can arise. These types of problems go back to Coleman [13] who
poses a question: whether a predator–prey system can have two or more ecologically stable
limit cycles. A first step to approach the problem of the existence and number of limit cycles
is to solve the center problem for these real systems.

We also mention that the following question regarding a particular subfamily of system
(6) has been raised in [32, p 231].

Problem 1. Let (A) be the family of all systems (5) with two invariant lines u± iv = 0 and two
other (real or complex) lines. What are the isochronous systems and the Darboux linearizable
systems inside the family?

Since the family (6) contains all systems (5) with two invariant lines u ± iv = 0, it contains
also the family (A). Thus, we find all isochronous centers not only inside (A), but within a
much richer family. We discuss, in more detail, how our results are connected to the problem
of isochronicity in the final section.
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2. Preliminaries

In this section, we briefly describe the general approach used to study the linearizability
problem for the polynomial system (2). The first step is the calculation of the so-called
linearizability quantities, which are polynomials of the coefficients ai,j and bi,j of system (2).
Taking derivatives with respect to t in both parts of each of the equalities in (4) and equating
coefficients of the terms xq1+1yq2 and xq1yq2+1 we obtain the recurrence formulae,

(q1 − q2)cq1,q2 =
q1+q2−1∑
s1+s2=0

[
(s1 + 1)cs1,s2aq1−s1,q2−s2 − s2cs1,s2bq1−s1,q2−s2

]
, (7)

(q1 − q2)dq1,q2 =
q1+q2−1∑
s1+s2=0

[
s1ds1,s2aq1−s1,q2−s2 − (s2 + 1)ds1,s2bq1−s1,q2−s2

]
, (8)

where s1, s2 � −1, q1, q2 � −1, q1 + q2 � 0, c1,−1 = c−1,1 = d1,−1 = d−1,1 = 0, c0,0 =
d0,0 = 1, and we set ap,q = bp,q = 0 if p + q < 1. Hence, we compute cq1,q2 and dq1,q2

of the formal change of variables (4) step by step using formulae (7) and (8). In the case
q1 = q2 = q, the coefficients cq,q and dq,q can be chosen arbitrary (we set cq,q = dq,q = 0).
The system is linearizable if and only if the quantities on the right-hand side of (7) and (8) are
equal to zero for all q1 = q2 = q ∈ N. In the case q1 = q2 = q, we denote the polynomials on
the right-hand side of (7) by iq and on the right-hand side of (8) by −jq , calling them the qth
linearizability quantities. Hence, system (2) with the given coefficient (A,B) is linearizable
if, and only if, iq(A,B) = jq(A,B) = 0 for all q ∈ N.

In the space of the parameters of a given family of systems (6) the set of all linearizable
systems is an affine variety V of the ideal 〈i1, j1, i2, j2, . . .〉. We recall that the variety of
a given polynomial ideal F = 〈f1, f2, . . . , fs〉 is the set of common zeros of polynomials
f1, f2, . . . , fs, and it is denoted by V (F ). Denote by Ik the ideal generated by the first k pairs
of the linearizability quantities,

Ik = 〈i1, j1, . . . , ik, jk〉. (9)

By the Hilbert basis theorem, there exists N ∈ N such that V is equal to the variety of the
ideal IN , V = V (IN). However, the theorem does not give a constructive procedure to find N.
In practice, N0 is taken such that

V (IN0) = V (IN0+1). (10)

Subsequently, the minimal associated primes of the ideal IN0 = 〈i1, j1, . . . , iN0 , jN0〉, which
define the irreducible decomposition of the variety V (IN0) of the ideal IN0 , are computed, and
for each component one tries to find the linearizing transformation (4). The most powerful
method to find linearizing transformations is the so-called Darboux linearization, see [11, 12,
22, 33]. A smooth function, F(x, y), satisfying

∂F

∂x
ẋ +

∂F

∂y
ẏ = KF, (11)

is called a Darboux factor of system (6), and the polynomial K(x, y) is called the cofactor.
The following theorem allows us to construct linearizing substitutions if sufficiently many

Darboux factors are known.
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Theorem 1 ([15]). Assume that the coordinate axes are trajectories of system (2) and the system
has Darboux factors Fi(x, y) satisfying Fi(0, 0) = 1 with the cofactors Ki(x, y), i = 1, . . . , s.
If

(1 − c)
P (x, y)

x
− c

Q(x, y)

y
+

s∑
i=1

αiKi = 1 (12)

for some c, α1, . . . , αs ∈ C, then the first equation of (2) can be linearized by the substitution
X = x1−cy−c�cf

α1
1 · · · f αs

s , and if

−c
P (x, y)

x
+ (1 − c)

Q(x, y)

y
+

s∑
i=1

βiKi = −1 (13)

for some c, β1, . . . , βs ∈ C, then the second equation of (2) can be linearized by the substitution
Y = x−cy1−c�cf

β1
1 · · · f βs

s , where � is a first integral of the form (3).

The theorem is a generalization of the theorems of [32, 33]. The difference between
theorem 1 (and other generalizations, see also [22])) and the Darboux linearization theorems
of [32, 33] is that they only permit invariant algebraic curves and exponential Darboux factors
to construct linearizations, but in our generalization we allow any function with a cofactor.
Thus, it allows us to work with some unknown functions as a first integral or an inverse
integrating factor, but with known cofactors. For example, the first integral is a Darboux factor
with the cofactor zero, and the inverse integrating factor is a Darboux factor with the cofactor
being the divergence of the vector field.

If system (2) has a first integral (3) and a linearization of one of the equations of (2) is
known, say the second equation is linearizable by z2 = Y (x, y), then the first one is linearizable
by the substitution z1 = �(x, y)/Y (x, y).

3. The linearizability conditions

In this section, we will find the conditions for linearizability of system (6). For this system
using a straightforward modification of Mathematica code from [37], we have computed
the first seven pairs of linearizability quantities. The polynomials are too long, so we do
not give them here. The interested reader can easily compute them by using any available
computer algebra system with the algorithms of [12, 37], for instance. Thus, we obtained
the increasing chain of ideals I1 ⊆ I2 ⊆ · · · ⊆ I7 and the decreasing chain of varieties
V(I1) ⊇ V(I2) ⊇ · · · ⊇ (I7), where Is are ideals (9). By the radical membership test (see,
e.g., [14, chapter 4]), a polynomial f vanishes on the variety of the ideal J ⊂ C[x1, . . . , xn]
if and only if a Groebner basis of the ideal 〈1 − wf, J 〉 ⊂ C[w, x1, . . . , xn] is equal to one.
Using the test we checked that both i7 and j7 vanish on the variety V(I6), that is, (10) holds
with N0 = 6. Thus, we guess that the chain of the varieties V(I1) ⊇ V(I2) ⊇ · · · stabilizes
on V(I6), that is, V(I6) = V(〈i1, j1, i2, j2, . . .)〉, and now we have to prove that this is indeed
the case.

Note that for (6) i1 = 3a01a10 + 3a11 + 3a01b10 and j1 = −3a01b10 − 3b01b10 − 3b11, so
from now on we assume that in (6) a11 = −a01a10 − b10a01 and b11 = −b01b10 − b10a01.
To find necessary conditions for the linearizability of system (6) it is sufficient to find the
irreducible decomposition of the variety V (I) of the ideal I = 〈i1, j1, . . . , i6, j6〉. To do so,
we used the routine minAssGTZ [34] of Singular [25] which finds the minimal associated
primes of a polynomial ideal by means of the Gianni–Trager–Zacharias method [19]. Note
that if for system (6) a01 	= 0 and b10 	= 0, then by a linear transformation we can set in (7)

5
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a01 = b10 = 1. Using this observation in order to simplify calculations, we split system (6)
into three systems considering separately the cases:

(α)a01 = b10 = 1, (β)a01 = 1, b10 = 0, (γ )a01 = b10 = 0.

For the case (α) we have obtained the necessary and sufficient conditions to have a linearizable
center at the origin presented in theorem 2. The other remaining cases are studied in
theorems 3 and 4. Note that if we apply to the conditions of theorem 3, which give the
conditions for the case (β), the involution aij ↔ bji then we obtain the integrability conditions
of system (6) for the case a01 = 0, b10 = 1. Thus, theorems 2–4 provide the complete solution
to the linearizable center problem of system (6). In the proof of theorem 2, we briefly describe
an approach to find the necessary linearizability conditions, and then we show that the obtained
conditions are also the sufficient conditions for a linearizable center. For cases (1), (2), (4),
(5) of theorem 2, cases (1–5) of theorem 3 and all cases of theorem 4. the sufficiency of the
conditions is established by applying theorem 1, that is, looking for Darboux factors of each
family in order to construct a linearizing transformation of the form (4); however, to treat the
other cases we have developed an approach based on another idea (which has some common
features with the approach of [17]).

Theorem 2. System (6) with a01 = b10 = 1 is linearizable at the origin if and only if
a11 = −a10 − a01 and b11 = −b01 − b10, and one of the following conditions holds:

(1) b01 − b20 − b02 + 1 = a02 + b02 = a20 + b20 = a10 + b20 + b02 + 1 = 0,
(2) b01 − 3b20 + 1 = a02 = a20 − b20 = a10 − b20 + 1 = 2b2

20 − 2b20 + b02 = 0,
(3) 2a02 + b01 + 1 = a10 + 2b20 + 1 = 2b20b02 − b01 + 2b02 − 1 = 2a20b02 − b01 + 2b20 − 1

= b2
20 + a20 + b20 = b01b20 + b01 − b20 + 1 = b2

01 + 4b02 − 1 = a20b01 − a20 − 2b20 = 0,
(4) b20 = b01 − b02 + 1 = a02 = a20 − b02 = a10 − b02 + 1 = 0,
(5) b20 = b01 − b02 + 1 = a02 − b02 = a10 − 3b02 + 1 = 2b2

02 + a20 − 2b02 = 0,
(6) b02 = b20 − 2 = b01 = 2a02 + 1 = a20 + 4 = a10 + 4 = 0,
(7) b02 + 4 = 2b20 + 1 = b01 + 4 = a02 − 2 = a20 = a10 = 0,
(8) 4b02 + 3 = b20 − 6 = b01 − 2 = 8a02 + 3 = a20 − 12 = a10 + 4 = 0,
(9) b02 − 12 = 8b20 + 3 = b01 + 4 = a02 − 6 = 4a20 + 3 = a10 − 2 = 0.

Proof. To obtain the necessary condition for the linearizable center of system (6) with
a01 = b10 = 1 we look for the irreducible decomposition of the variety of the ideal
I = 〈i1, j1, . . . , i6, j6〉, where a01 = b10 = 1. This is an extremely difficult computational
problem which represents the most laborious part of our study. To perform the decomposition,
we have used our computational approach, described in detail in [36].

Making use of the routine minAssGTZ of the computer algebra system Singular
[25], we have found the irreducible decomposition of the variety of the ideal I =
〈i1, j1, . . . , i6, j6〉. The obtained decomposition consists of ten components. Then using
the rational reconstruction algorithm [40], we go back to rational arithmetics. Performing the
check similarly as in [36, p 5912], we see that one of the ten components is not a true one;
the remaining nine, given in the statement of the theorem, give the correct decomposition. The
usage of the modular arithmetics for the decomposition of varieties defined by coefficients of
normal forms of system (2) goes back to the work by Edneral [18]. The difference of our
approach is that we perform an additional check as described in [36].

We now show that under these conditions the system is linearizable. We can omit cases
5, 7 and 9 since they are dual to 2, 6 and 8, respectively, under the involution aij ↔ bji .

In order to find the Darboux factors we look for them in the form F = ∑n
i+j=0 αijx

iyj

with K = ∑m−1
i+j=0 βij x

iyj (m is the degree of the system, in our case m = 2; finding a

6
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bound for n is the Poincaré problem, still unresolved). Substituting this expression in (11) and
equaling the coefficients of the same terms on the both sides of the equality, we obtain a system
of polynomial equations in variables αij , βij . If a solution of the system exists, then solving
the system we find a Darboux factor F (or a few such factors) of (2), which geometrically is
the trajectory of (2) defined by F(x, y) = 0. Since F is a polynomial, it is called an algebraic
invariant curve of (2).

For case 1, the corresponding system is written as

ẋ = x(1 + b20x
2 + (b02 + b20 + 1)x − (b02 + b20)yx + b02y

2 − y),

ẏ = −y(1 − b20x
2 + (b02 + b20)yx − x − b02y

2 − (b02 + b20 − 1)y).

Using the described approach we find that the system has the invariant lines:


1 = 1 + 1
2

(
b02 + b20 −

√
(b02 + b20 − 1)2 + 4b02 + 1

)
x

+ 1
2

(−b02 − b20 −
√

(b02 + b20 − 1)2 + 4b02 + 1
)
y,

and


2 = 1 +

(
b02

2
+

b20

2
+

1

2

√
(b02 + b20 − 1)2 + 4b02 +

1

2

)
x

+
1

2

(−b02 − b20 +
√

(b02 + b20 − 1)2 + 4b02 + 1
)
y,

which yield the Darboux linearization

z1 = x
α
1 


β

2 , z1 = y

γ

1 
δ
2,

where

α = b02 + b20 − � + 1

2� , β = b02 + b20 + � + 1

2� ,

γ = −b02 + b20 + � − 1

2� , δ = b02 + b20 − � − 1

2� ,

and � =
√

b02
2 + 2(b20 + 1)b02 + (b20 − 1)2.

In case 2, the system admits the invariant lines:


1 = 1 − b20x, 
2 = 1 − 2xyb2
20

b20 − 2
− 2yb20,


3 = 2x2yb2
20 + 4xyb2

20 + 2yb2
20 − 2xb20 − 4xyb20 − 3yb20 − 2b20 + x + y + 1,

and a Darboux linearization is given by

z1 = x

α1
1 


α2
2 


α3
3 , z2 = y


α4
1 


α5
2 


α6
3 ,

where

α1 = − b20

b20 + 1
, α2 = 1

b20 + 1
, α3 = −α2,

α4 = 2α2, α5 = 2α1, α6 = b20 − 1

b20 + 1
.

The system of case 3 is written as

ẋ = x

(
b20(b20 + 1)x2 + (2b20 + 1)x − 2b20yx +

b20y
2

b20 + 1
− y + 1

)
= P(x, y),

(14)

ẏ = −y

(
−b20x

2 +
2b20yx

b20 + 1
− x − b20y

2

(b20 + 1)2
− (b20 − 1)y

b20 + 1
+ 1

)
= Q(x, y).

7
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In addition to the coordinate axes it has the invariant line,


1 = b20x − b20y

b20 + 1
+ 1.

However it is impossible to find a Darboux integral or an integrating factor using these lines.
Although we are not able to find a closed form for a first integral (3) of system (14) we prove
that such an integral exists. To this end, we make the substitution z = y/x. In the new
coordinates (14) takes the form

ẋ = x
(
x2b3

20 + 2x2b2
20 + 2xb2

20 − 2x2zb2
20 + x2b20 + x2z2b20 + 3xb20

− 2x2zb20 − xzb20 + b20 + x − xz + 1
)/

(b20 + 1),

ż = −z
(
x2b4

20 + 2x2b3
20 + 2xb3

20 − 2x2zb3
20 + x2b2

20 + x2z2b2
20 + 4xb2

20 − 2x2zb2
20

− 2xzb2
20 + 2b2

20 + 2xb20 − 2xzb20 + 4b20 + 2
)/

(b20 + 1)2. (15)

We look for a first integral of (15) in the form

ψ(x, z) = x2z

∞∑
k=2

fk(z)x
k, (16)

where fk(z) are polynomials satisfying a first-order linear differential equation,

f ′
k − k

2z
fk + a1f

′
k−1 + a2f

′
k−2 +

b1

x
fk−1 +

b2

z
fk−2 = 0,

where ai, bi for i = 1, 2 stand for some polynomials in z of degree i. Solving the equation,
we obtain f2(z) = z, f3(z) = z

(−4b20 − 4z
b20+1 − 4

)
and by induction we conclude that the

other function fk can be chosen in the form

fk(z) = zpk−2(z),

where pk−2(z) is a polynomial of degree k − 2 in z. Then �(x, y) = √
ψ(x, y/x) is a first

integral of (14) of the form (3). (In more detail, the approach is described for case 6 of
theorem 3 below.)

It is obvious that we can write system (2) with a first integral (3) in the form

ẋ = r�y, ẏ = −r�x, (17)

for some analytic function r(x, y) with r(0, 0) = 1. Eliminating � in (17) gives us
ṙ = div(x, y)r , which means that r is a Darboux function with the cofactor div(x, y), and
therefore r is an inverse integrating factor. Equation (12),

(1 − f )P (x, y)/x − f Q(x, y)/y + cK1 + h div(x, y) − 1,

where K1 is the cofactor of 
1, and P,Q are the right-hand sides of (14), has the solution

c = 2b20

b20 + 2
, f = 1

b20 + 2
, h = − b20

b20 + 2
.

Therefore, the linearization of (14) is given by

z1 = �
1

b20+2 r
− b20

b20+2 x
1− 1

b20+2 y
− 1

b20+2 


2b20
b20+2

1 , z2 = �
b20+1
b20+2 r

b20
b20+2 x

− b20+1
b20+2 y

1− b20+1
b20+2 


− 2b20
b20+2

1 .

For case 4, we found the invariant lines,


1 = 1 − b02y, 
2 = 1 − b02x, 
3 = b02x + 2b02xy + (b02 − 1)y − x + b02 − 1,

which allow us to obtain the Darboux linearization,

z1 = x
α
1 


−b02α
2 
−α

3 , z2 = y

−b02α
1 
α

2 
−α
3 ,

where α = 1/(1 + b02).

8
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Case 6 is treated similarly to case 3. Performing the change, z = y/x, and looking for a
first integral of the obtained system in the form

ψ(x, z) = x2z

∞∑
k=2

fk(z)x
k,

one can easily see that the functions fk(z) can be found recursively in the form

fk(z) = zpk−1(z),

where pk−1(z) is a polynomial of degree k − 1 in z. Then � = √
ψ(x, y/x) is a first integral

of the form (3) and using (12) we find that a linearization is given by the substitution

z1 = �5/4r1/4

x1/4y5/4
, z2 = �

z1
,

where r is defined from (17) and therefore r is an inverse integrating factor.
Case 8: the corresponding system is written as

ẋ = x

(
−12x2 − 3yx + 4x +

3y2

8
− y + 1

)
= P(x, y),

(18)

ẏ = −y

(
−6x2 + 3yx − x +

3y2

4
− 2y + 1

)
= Q(x, y).

We look for a linearization of the second equation of the system Y = Y (x, y). The function Y
should satisfy the equation

∂Y

∂x
P +

∂Y

∂y
Q + Y = 0.

After the substitution x = yz, the latter equation is written as

1

y

∂Y

∂z
P +

(
∂Y

∂y
− z

y

∂Y

∂z

)
Q + Y = 0. (19)

On can easily check using induction on k that a solution to (19) can be obtained in the form

Y (z, y) = y

(
1 +

∞∑
k=1

gk(z)y
k

)
,

where gk(z) is a polynomial of degree k. Then, Y
(

x
y
, y

)
is a series in x and y of the form

Y (x, y) = y +
∑∞

k+j=2 Ykjx
kyj . Since

� =
xy 4

√
−2x − y

2 + 1(
6x − 3y

2 + 1
)3/4

is a first integral of (18), the first equation of (18) is linearizable by the substitution X = �/Y .
�

To obtain the necessary conditions for cases (β) and (γ ), presented in theorems 3
and 4, respectively, we found the minimal associate primes of the corresponding ideals
I6 = 〈i1, j1, . . . , i6, j6〉. For these ideals, we were able to complete all the calculations
with Singular over the field of rational numbers.

Theorem 3. System (6) with a01 = 1, b10 = 0 is linearizable at the origin if and only if
a11 = −a10, b11 = 0 and one of the following conditions holds:

9
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(1) b20 = a02 − b01 + 2 = a10 = 0,
(2) b20 = b01 + b02 − 1 = a02 + b02 + 1 = 0,
(3) b20 = a20 = 0,
(4) b02 = b01 + 2 = a02 = 2a20 + b20 = a10 = 0,
(5) b02 + 8 = b01 − 6 = a02 = 2a20 − b20 = a10 = 0,
(6) b2

02 +10b02 −4 = 2b01 −b02 −20 = 2a02 +3b02 +24 = −5b20b02 +8a20 +6b20 = a10 = 0.

Proof. We now prove that they are the sufficient conditions. In case 1, system (6) with
conditions (1) takes the form

ẋ = x(1 − a20x
2 − y + (2 − b01)y

2), ẏ = −y(1 − b01y − b02y
2). (20)

System (20) has two invariant lines given by


1,2 = 1 +
1

2

(−b01 ±
√

b2
01 + 4b02

)
y.

Moreover, we can construct an inverse integrating factor of the form V = x3y3

β1
1 


β2
2 , where

β1,2 =
(b01 − 2)

(
b01 + b02 ±

√
b2

01 + 4b02
)

b02

√
b2

01 + 4b02

.

Multiplying both parts of (20) by 

β1
1 


β2
2 , we obtain a system

ẋ = P(x, y), ẏ = Q(x, y), (21)

such that V = x3y3 is an inverse integrating factor for (21), and the coefficients of x3y2 and
x2y3 in the series expansions for P and Q, respectively, are equal to zero. Therefore, by
theorem 4.13, and (4.28) of [11], system (20) admits a first integral � of the form (3). (Note
that using the integrating factor it is possible to find a first integral of (20) in the closed form,
but it is a long expression involving the Appell hypergeometric function.)

Looking for a solution of the equation Q(x, y)/y +
∑

αiKi = −1, we find that the second
equation is linearizable by the substitution z2 = y


α1
1 


α2
2 , where α1,2 are given by

α1,2 = −1

2
± b01

2
√

b2
01 + 4b02

. (22)

Finally, using the existence of the analytic first integral � the first equation is linearizable by
the substitution z1 = �/z2.

In case 2, system (6) with conditions (2) takes the form

ẋ = x(1 − a10x − a20x
2 − y + a10xy + (1 + b02)y

2), ẏ = −y(1 − (1 − b02)y − b02y
2).

(23)

System (23) has four invariant lines given by


1 = 1 − y, 
2 = 1 + b20y, 
3,4 = 1 + 1
2

(−a10 ±
√

a2
10 + 4a20

)
x − y.

Moreover, system (23) has a first integral of the form � = xyl
β2
2 l

β3
3 l

β4
4 with

β2 = −1 + b02

b02
, β3,4 = −1

2
± a10

2
√

a2
10 + 4a20

, (24)

and system (23) is linearizable by the substitutions

z1 = xl
α1
1 l

α2
2 , z2 = yl

−α1
1 l

β2−α2
2 l

α3
3 l

α4
4 ,

where α1 = 1/(1 + b02), α2 = (−1 − 2b02)/(b02(1 + b02)) and α3,4 = β3,4 given in (24).

10
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In case 3, system (6) with conditions (3) takes the form

ẋ = x(1 − a10x − y + a10xy − a02y
2), ẏ = −y(1 − b01y − b02y

2). (25)

This system admits the invariant lines


1,2 = 1 + 1
2

(−b01 ±
√

b2
01 + 4b02

)
y,

which allow us to construct an inverse integrating factor of the form V = x2y2

β1
1 


β2
2 , where

β1,2 =
a02

( ± b01 +
√

b2
01 + 4b02

)
+ b02

( ∓ 2 ± b01 +
√

b2
01 + 4b02

)
2b02

√
b2

01 + 4b02

.

Using the equation Q(x, y)/y +
∑

αiKi = −1, we see that the second equation is linearizable
by the substitution z2 = y


α1
1 


α2
2 , where α1,2 are given in (22). Using the existence of the

inverse integrating factor V it is possible to find a first integral of (25) in the closed form (3),
but it is a long expression involving the Appell hypergeometric function. On the other hand,
multiplying both parts of (25) by 


β1
1 


β2
2 we obtain a system, such that V = x2y2 is an inverse

integrating factor for it, and the coefficients of x2y and xy2 in the series expansions for the first
and the second equations, respectively, are equal to zero. Thus by theorem 4.13 and (4.28) of
[11] system (25) has a first integral � of the form (3). Using the integral, the first equation is
linearizable by the substitution z1 = �/z2.

Case 4 is a particular case of the dual to case 3 under the involution aij ↔ bji .
In case 5, the system has two cubic invariant algebraic curves given by


1 = 1 − 12y + 12b20x
2y + 48y2 − 64y3, 
2 = 1 − 4y + 4b20x

2y.

Moreover, the system has a first integral of the form � = 

−1/3
1 
2 and the expansion of � − 1

has the form � −1 = x2y2 + · · ·. Applying theorem 1, the system is linearizable by the change
of variables z1 = x2y


−2/3
1 
2(� − 1)−1/2 and z2 = x−2y−1
2(� − 1).

In case 6, system (6) with conditions (6) takes the form

ẋ = x(1 − (5b01b20 − 53b20)x
2/4 − y − (18 − 3b01)y

2),

ẏ = −y(1 − b20x
2 − b01y − (2b01 − 20)y2),

(26)

where b01 = (15 ± √
29)/2. We have not been able to find more algebraic curves than x = 0

and y = 0. But applying theorem 1, system (26) is linearizable by the change of variables
z1 = x(1−c)y−c�cra and z2 = �/z1, where r and � are an inverse integrating factor and a
first integral of system (26), respectively, and

a = −956 ± 463
√

29

1495
, c = 3(−853 ± 349

√
29)

1495
.

To complete this case it remains to prove the existence of an analytic first integral � and
consequently the existence of the integrating factor r. We are going to prove that system (26)
has an analytic first integral by induction. First, doing the map {z = y/x, x = x} system (26)
becomes

ẋ = x[4 + (53 − 5b01)b20x
2 − 4xz + (12b01 − 72)x2z2]/4,

ż = −z[8 + (49 − 5b01)b20x
2 − (4 + 4b01)xz + (8 + 4b01)x

2z2]/4.
(27)

System (27) admits an analytic first integral of the form

ψ(x, z) = x2z

∞∑
k=2

fk(z)x
k,

11
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and one can easily see that the functions fk(z) can be found recursively in the form
fk(z) = zpk−1(z) where pk−1(z) is a polynomial of degree k − 1. The polynomials fk(z)

satisfy the following recurrence differential equation:

a(z)fk−2 + b(z)fk−1 + c(z)f ′
k−2 + d(z)f ′

k−1 − 2z2f ′
k(z) + (k − 1)zfk(z) = 0, (28)

for k � 4, where a(z) = (53k + 4 − 5kb01) b02z/4 + ((3k + 2)b01 − 18k − 20)z3, b(z) =
(b01 − (k + 1))z2, c(z) = (5b01 − 49)b20z

2/4 − (2z + b01)z
4, d(z) = (1 + b01)z

3.
Calculations yield that we can choose f2(z) = z and f3(z) = 2(−1 + b01)z2. Assume
that for k = 4, . . . , m, there are polynomials fk(z) satisfying (28) and such that deg(fk) = k,
then for k = m + 1, solving the linear differential equation (28), we obtain

fm+1(z) = Cz
m+2

2 +
1

2
z

m+2
2

∫
z− m+4

2 hm+2,

where hm+2 = a(z)fm−1 + b(z)fm + c(z)f ′
m−1 + d(z)f ′

m. Since hm+2 is a polynomial of degree
m + 2, taking C = 0 it is easily seen that deg fm+1 = m + 1. Thus, the inductional claim is
fulfilled. Hence, going back to the original coordinates � = √

ψ(x, y/x) is a first integral of
the form (3). �

Remark. Some functions appearing in the proofs of theorems 1 and 2 are not defined for
specific values of parameters. The existence of an integral (3) for these specific values follows
from the fact that the set of all systems (6) with a center at the origin is a closed set in the
Zariski topology.

Theorem 4. System (6) with a01 = b10 = 0 is linearizable at the origin if and only if
a11 = b11 = 0 and one of the following conditions holds:

(1) b20 = a02 = 0,
(2) b20 = a20 = 0,
(3) a02 + b02 = a20 + b20 = 0,
(4) b02 = a02 = 0.

Proof. In case 1, the system has the invariant lines,


1,2 = 1 + 1
2

(−b01 ±
√

b2
01 + 4b02

)
y, 
3,4 = 1 + 1

2

(−a10 ±
√

a2
10 + 4a20

)
x,

and it is linearizable by the substitutions

z1 = x

α3
3 


α4
4 , z2 = y


α1
1 


α2
2 ,

where

α1,2 = −1

2
± b01

2
√

b2
01 + 4b02

, α3,4 = −1

2
± a10

2
√

a2
10 + 4a20

. (29)

In case 2, system (6) with conditions (2) becomes

ẋ = x(1 − a10x − a02y
2), ẏ = −y(1 − b01y − b02y

2). (30)

Similarly to case 3 of theorem 3, system (30) has only two invariant straight lines given by


1,2 = 1 +
1

2

(−b01 ±
√

b2
01 + 4b02

)
y.

However, we can construct an inverse integrating factor of the form V = x2y2

β1
1 


β2
2 where

β1,2 =
(a02 + b02)

( ± b01 +
√

b2
01 + 4b02

)
2b02

√
b2

01 + 4b02

.

12
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Using the equation Q(x, y)/y +
∑

αiKi = −1, we see that the second equation is linearizable
by the substitution z2 = y


α1
1 


α2
2 , where α1,2 are given in (29). Finally, using the existence of

the an analytic first integral � of the form (3) guaranteed by the same argument as for case 3
of theorem 3, the first equation is linearizable by the substitution z1 = �/z2.

In case 3, system (6) with conditions (3) takes the form

ẋ = x(1 − a10x + b20x
2 + b02y

2), ẏ = −y(1 − b01y − b20x
2 − b02y

2). (31)

System (31) has four invariant lines given by


1,2 = 1 − 1
2

(
a10 ±

√
a2

10 + 4a20
)
x − 1

2

(
b01 ±

√
b2

01 + 4b02
)
y,


3,4 = 1 − 1
2

(
a10 ±

√
a2

10 + 4a20
)
x − 1

2

(
b01 ∓

√
b2

01 + 4b02
)
y.

Moreover, system (31) has a first integral of the form � = xy
−1
1 
−1

2 . Applying theorem 1,
system (31) is linearizable by the change of variables z1 = x


α1
1 


α3
2 


α5
3 and z2 = y


α2
1 


α4
2 


−α5
3 ,

where α1,2,3,4 are given in (29) and α5 = −α1 − α3 − 1.
Case 4 is the dual to case 2 under the involution aij ↔ bji . �

4. Concluding remarks

We have presented the solution to the linearizability problem for the general complex cubic
system of autonomous differential equations with two invariant lines. From our results we
can easily obtain the classification of all isochronous centers in the cubic system (5) with two
complex lines u ± iv = 0. To obtain the conditions for isochronicity of such a system from
the conditions of linearizability of system (6) we can set

a10 = a1 + ib1, a01 = a2 + ib2, a20 = a3 + ib3,
(32)

a02 = a4 + ib4, a11 = −(a2 + ib2)a1

and consider the equation

ẋ = ix(1 − a10x − a01x̄ − a20x
2 − a11xx̄ − a02x̄

2). (33)

Substituting in this equation instead of akj expressions (32) and x = u+iv, and then separating
the real and imaginal parts of (33) we obtain from (33) a system

u̇ = −u + P̃2(u, v) + P̃3(u, v), v̇ = v + Q̃2(u, v) + Q̃3(u, v). (34)

Then substituting expressions (32) with a2 = 1, b2 = 0 into the conditions (1–8) of theorem 2
we obtain nine conditions for isochronicity of system (34). Similarly, substituting expressions
(32) with a2 = b2 = 0 into the conditions (1–4) of theorem 4 we obtain four more conditions
for isochronicity of (34). Since every system (5) with the isochronous center at the origin
and the invariant lines u ± iv = 0 can be transformed to system (34), and systems studied
in theorem 3 have no real counterpart, the obtained 13 conditions present the solution of
the isochronicity problem for system (5) with the invariant lines u ± iv = 0 (we do not
write down the conditions here; however, the interested reader can easily compute them in
the way described). In particular, performing this computation one obtains the answer to
the first part of problem 1: ‘what are the isochronous systems inside the family (A)’. In fact,
inspecting the proof of theorems 2 and 4 we see that the isochronous systems inside (A) are the
systems corresponding to cases (1), (2), (4), (5), (8) of theorem 2 and all cases of theorem 4
(in particular, system (3)–(5) of [32] corresponds to the case (1) of our theorem (2)). As
to the second part of problem 1: ‘what are the Darboux linearizable systems inside family
(A)’, we see that all systems mentioned above except for case (8) of theorem 2 are Darboux
linearizable. We conjecture that the latter system is not Darboux linearizable in the sense of
[32, 33]; however, at present we cannot prove this conjecture.
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[8] Chavarriga J, Giné J and Garcı́a I A 1999 Isochronous centers of a linear center perturbed by fourth degree
homogeneous polynomial Bull. Sci. Math. 123 77–96
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